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Outline
• BG Science overview (brief)

• Computational resource estimates for protein kinetics and thermodynam-
ics

• Options for long range force evaluation

• Model calculations/estimates for the communications required for se-
lected options (FFT, position globalization)

• Blue Matter overview

• Wrap-up
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Science Mission Statement
We will use large scale biomolecular simulation to advance our under-
standing of biologically important processes, in particular our under-
standing of the mechanisms behind protein folding.
Advances in our understanding of biomolecular simulation required to achieve
the scientific goals of the Blue Gene project can be applied to a variety of
related problems including:

• Drug protein interactions (docking)

• enzyme catalysis (with hybrid quantum methods)

• structure refinement and scoring for database methods
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Why Protein Folding?
• Proteins are linear polymers made from amino acids

• Amino acid sequence determines the final structure

• Structure is tightly related to protein function

• Nature has evolved proteins not only to provide specific functions, but to
fold into the required conformation in a biologically relevant time scale

• Many proteins fold spontaneously*

• Diseases are associated with misfolding: e.g. Alzheimer’s, BSE, Cystic
Fibrosis

• Understanding protein folding mechanisms may help in developing self-
assembling molecules for nanotechnology

*Some proteins require chaperones, and other forms of assistance; some are
stabilized by internal chemical (disulfide) bonds and/or by association with
other cellular structures or molecules.
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Example of Protein (un)Folding
• β-hairpin in water at 900K for approximately 1ns

• requires ≈ 1 month of running time on a 375MHz Power3 CPU

• c-terminus of protein G
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Protein Folding and Blue Gene
• Folding Pathway Characterization (sampling including Monte Carlo)

– Describe the intermediate structures, the energy, entropy, free energy
landscape analysis along the "reaction path", without interest in kinet-
ics.

• Folding Kinetics

– Describe the rates associated with the folding phases, the time spent
in various states along the pathway.

• Protein structure prediction (comparative modeling, energy minimiza-
tion)

– By itself, structure prediction may not justify a large scale dynamical
simulation effort. However, simulation might be used to refine struc-
tures produced by other methods.
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Science Goals
• Identifying disease-related processes whose critical stage pathway can be

studied using large scale simulation

• Large scale studies of protein thermodynamics

• Long time scale studies of protein folding kinetics

• Connecting with experimental data

• Characterizing the models (force fields, water models) used in classical
molecular simulation
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Time Scales for Protein Folding
Phenomena

Phenomenon System/Size w/solvent Time Scale Time-step
Count

peptide ther-
modynamics

α-helix, β-hairpin/4000 0.1− 1µsec 108

peptide
kinetics

β-hairpin/4000 atoms 5µsec 109

protein ther-
modynamics

60−100 residues/20−30,000
atoms

1− 10µsec 109

protein
kinetics

60−100 residues/20−30,000
atoms

500µsec 1011
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Extrapolated Computational
Throughput
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Assessing Bounds to Scalability
• Major components in molecular simulation

– Bonded force evaluation

– Real space non-bond force evaluation

– Reciprocal space non-bond force evaluation

• Assess potential computational concurrency (neglecting communication
overheads).

• Estimate communications overheads for key portions of algorithm.

• Use these estimates to prioritize application development effort.
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Major Options for Non-bond Force
Evaluation

• P3ME/PME (FFT-based)

• Ewald (and effective pair potential techniques)

• Multigrid

• Tree-codes (e.g. Periodic Fast Multipole Method)

All of these typically require direct real space evaluation of pair interactions
within some finite range.
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Naive Scalability Model
• This model assumes globalization of positions, use of P3ME (neglecting

required near neighbor force reductions)

• This is one of the decomposition strategies being evaluated.

Tts =
1
p3

∑
i
Nudfi τudfi

+ 1
p3
Nsites τverlet

+
(Nsites
p3

) 4
3
π r 3

c ρ τnon−bond

+ τp3me(p,Nmesh)
+ τGlobalize(Nsites, p)
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P3ME
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Estimate of Communications
Requirements for Globalization of

Positions
• Simple approach: Globalize all particle positions using the tree (raw band-

width is 4bits/cycle).

– Tcomm = Vpositions/Rtreebandwidth ≈ 2.8×106 cycles for 30,000 atom sys-
tem.

– Compare with lower bound for computational time using estimate of
340 cycles/non-bond interaction in a water box with a 10Å cutoff: 4.3×
109 cycles. For a 512 node partition, assuming an even distribution of
the load, Tcomp ≈ 8.4× 106 cycles.
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Convolution (using 3D FFT)
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Model Estimate of Communication Time
for 3D FFT on BG/L

• All-to-all estimation methodology thanks to P. Heidelberger,
B. Steinmacher-burow, and A. Gara

• FFT of real-valued function on N ×N ×N mesh using p × p × p torus
with each node handling (N/p)3 mesh points.

• Each phase of the FFT requires all nodes to exchange data along a row or
within a plane of nodes so that the N2 1-D FFTs required can be
computed locally.

• Tcomm = Vreceived/node/(nlinks · futilized · Rbandwidth/nhops)
• For all-to-all within a row: nlinks = 2 and nhops = p/4
• For all-to-all within a plane nlinks = 4 and nhops = p/2
• For either row or plane:
Tcomm = Vreceived/node · p/(8 · Rbandwidth · futilized) and
Vreceived/node = (N/p)3 · sizeof(double)

• Tcomm = N3/(8 · Rbandwidth · futilized · p2)
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Estimates for 3D FFT on a 512(8× 8× 8)
node BG/L Partition

• Disclaimer: The following is not a prediction of real performance since
such items as software overheads and memory hierarchy effects are not
included in this crude estimate.

• Assuming Rbandwidth = 2bits/cycle, one phase (or one third) of a 3D FFT
on a 1283 mesh has a bandwidth limited time of ≈ 130,000 cycles or
≈ 165,000 cycles if 80% link utilization is assumed.

• Computation estimate: Using cycle count generated by vacpp compiler for
BG/L (courtesy of T.J.C. Ward), 128 point real FFT on BG/L is estimated to
take ≈ 5600 cycles so that the 1282/p3 computed by each node should
take ≈ 180,000 cycles (for p = 8).

• Conclusion: It is worth investing effort in an implementation of the FFT-
based P3ME method for periodic electrostatics.
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Molecular Simulation Methodology that
Extends Scalability

• To improve sampling efficiency for thermodynamic studies, a series of
molecular dynamics (or MC) simulations are run on the same system, each
run begin held at a different temperature.

• Periodically, an attempt is made to exchange configurations between dif-
ferent “replicas” using a Metropolis-style criterion.

• Depending on the system, anywhere from 32 to 128 or more replicas may
be coupled together.

• With each replica running on a 512 node partition, good utilization can be
obtained on 16K-64K nodes.
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Replica Exchange Method

Q (configuration)Q (configuration)

E(Q)E(Q)
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Replica Exchange Method Results
Temperature Trajectory of One Replica Replica Trajectory in Temperature 310K
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Replica Trajectory in Temperature 310K

• 64 replicas used for β-hairpin in water (≈5000 atoms)

• Temperature spans from 270 to 695 K
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Drivers for the Application from the
Science Program

• Study kinetics of solvated peptide/protein systems on very long scales
(microseconds and longer).

• Characterize models(force fields, water models) used in classical
biomolecular simulation

• Rigorous treatment of long range electrostatic interactions is a require-
ment.

• Need to gain confidence in validity of application code through use by Blue
Gene Science team.

• All studies are statistical in nature (maximizing scientific throughput for a
given experiment is the goal):

– Multiple trajectories required for kinetics studies.

– Multiple trajectories (coupled) required for efficient sampling in ther-
modynamic studies.
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Implications for Application
(from science)

• Relevant scalability is measured by speed-up on a fixed size problem rather
than scalability with molecular system size.

• Treatment of long range electrostatic interactions implicates global ex-
change of information.

• Need to run efficiently on currently available platforms to support early
science program.

• Efficient utilitization of large node count computational resources can be
achieved by partitioning into independent or loosely coupled simulation
runs.

• Simulating 1µsec trajectories requires ≈ 109 time-steps—to complete a
simulation of this magnitude within a month of running time requires in-
dividual time-steps to be computed within ≈ 3msec.

• Multiple force field support
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Drivers for the Application from the
Blue Gene Platforms

• 512–64K node counts (for BG/L)

• modest memory per node

• need to be conscious of interconnect topology

• chip architecture (two CPUs, pipelined, double FPU, etc.)
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Implications for Application
(from platforms)

• Fine-grained concurrency in application decomposition

• Short code paths (particularly from network to application logic)

• Minimize memory footprint of application (stay resident as high in memory
hierarchy as possible)

• Application requires compiler and/or hand optimization to fully utilize
chip (including inlining, unrolling, instruction scheduling, ...)

• Efficient application checkpoint/restart capability
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Software Engineering Considerations
• Layering to facilitate separation of MD complexities from those of parallel

software

• Black box testing comprising both regression and validation of molecular
dynamics functionality

• Need to target machines of dramatically different sizes and configurations

• Need to support a variety of MD techniques and experimental environ-
ments

• Enabling customized builds of application kernels containing only desired
components

• Leveraging existing MD packages where possible for problem setup
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High Level Design Decisions
• Strip as much domain (chemical) knowledge as possible out of the parallel

kernel

• Datagram-based i/o — no dependency on filesystem availability

• Active message (packet) layer as basis for communications

• Customized generation of runtime kernel in standard C++

• Reliance on efficient inlining to allow logical application layering

• Support for application-based subpartitioning where it makes sense, e.g.
loosely coupled trajectories for replica exchange
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Blue Matter
• Application platform for the Blue Gene Science program

• Prototyping platform for exploration of application frameworks suitable
for cellular architecture machines

• Blue Matter comprises all of the necessary application components–those
that run on the computational core and those that run on the host

• Not an evolution from existing code



© 2000-2002 IBM Corporation •First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Blue Matter
• Collection of modules including the following:

– Generator for MD core engine (massively parallel, minimal in size, runs
on BG/L)

– Utility programs to import force field assignments from other pack-
ages, manage molecular system specifications in database, etc.

– Monitoring and analysis tools to analyze MD trajectories, etc.

• Framework for “black box” testing of molecular simulation function

– Enable algorithmic and tuning explorations while preserving applica-
tion semantics

– Attempt to minimize impact of coding explorations on science team
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Blue Matter Overview
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Application Programming Techniques
• Separate computation from communication

• Currently:

– Identify data-dependencies “by hand”

– At each processing stage, identify appropriate partitioning keys

– Program flow is a directed acyclic graph (DAG) where the work for each
node may be partitioned

– User implements “call-backs” as methods of classes that are passed as
template parameters to the parallel application framework that handles
data transport

• Areas for future research:

– High level specifications of applications/algorithms

– Partial or complete automation of data dependency analysis

– Partial or complete automation of customized parallel framework
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Application Programming Example:
Plan for P3ME/Convolution

• C++ template class parameterized by

– processor mesh dimensions

– dimensions of charge mesh

– Serial 1D FFT function object

– Kernel function object (Green’s function)

• Compiles to BG/L packet layer

• Active packet message handler is a memory put and also handles synchro-
nization
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Options for Parallel Decomposition
Targeting BG/L

• Global force reduction — replication of dynamics propagation

• Globalize positions — double computation of forces, P3ME issues

• Globalize positions with nearest neighbor force reduction with approxi-
mate volume decomposition — supports P3ME

• Globalize positions with near neighbor (cutoff radius) force reduction
with approximate volume decomposition — supports P3ME, avoids double
computation of forces
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Load Balancing Issues
• p nodes implies imbalance smaller than 1/p to maintain scalability

• O(1msec) time-step execution time means “real-time”-like programming
techniques required

• currently based on global information

• future work involves approach using near neighbor communication
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Compiler-related Work
• Work with Toronto compiler group to improve code generation (floating

point unit utilization) by providing computational kernels from molecular
simulation application.

• Toronto group (Mark Mendell) modified back-end to product compiler to:

– spot opportunities for inlining better

– increase window size for instruction reordering optimization

• Compiler modifications target BG/L, but can be used to generate code for
Power3/4 targets

• Source code changes:

– structure a loop for 3-way unroll

– increase the independence of parts of the loop

• Measured improvements of 30-40% in execution times of selected kernels
on Power3 platform obtained by source code changes (T.J.C. Ward) and
use of modified back-end.
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Wrap-up
• BG/L communications capabilities enable use of straightforward ap-

proaches for long range force evaluation for an interesting range of node
counts.

• Areas for further work

– Communications sizings for additional alternatives (to explore their
scalability limits).

∗ Ewald
∗ treecodes (e.g. periodic fast multipole)
∗ multigrid

– More detailed sizings of communication and computation for selected
molecular simulation kernels using cycle accurate simulators and other
tools as they become available.


